Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

نویسندگان

  • Markus A Keller
  • Andre Zylstra
  • Cecilia Castro
  • Alexandra V Turchyn
  • Julian L Griffin
  • Markus Ralser
چکیده

Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic properties of the Calvin cycle and pentose phosphate pathway

The enzymes of the Calvin cycle and pentose phosphate pathway operate in close conjunction with enzymes of glycolysis and gluconeogenesis. The last two metabolic routes are thermodynamically well characterized, but the former two are not. In this work, the thermodynamic properties of the 19 enzymatic reactions of the pentose phosphate pathway and the Calvin cycle, under standard conditions were...

متن کامل

Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean

The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potentia...

متن کامل

Carbohydrate Metabolism and Carbon Fixation in Roseobacter denitrificans OCh114

The Roseobacter clade of aerobic marine proteobacteria, which compose 10-25% of the total marine bacterial community, has been reported to fix CO(2), although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO(2) assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseoba...

متن کامل

Novel Pathway for Alcoholic Fermentation of -Gluconolactone in the Yeast Saccharomyces bulderi

Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent glucose dehydrogenase (EC 1.1.1.47). After phosphorylation, half of the glucose is metabolized via t...

متن کامل

Polytrauma induces increased expression of pyruvate kinase in neutrophils.

Polytrauma (PT) leads to systemic activation of polymorphonuclear neutrophils (PMNs). Organ damage commonly found in these patients is ascribed to respiratory bursts of activated PMNs. With the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, PMN extracts from PT patients were found to contain a clear protein band not seen in control PMNs from healthy volunteers. This band was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016